Operating Manual

MultiTox Detector

MultiTox DGi-TT7-E

DGi-TT7-0

DG-TT7-S

Copyright © June 2019 by TELEDYNE Oldham Simtronics S.A.S.

All rights reserved. No reproduction of all or part of this document, in any form, is permitted without the written consent of TELEDYNE Oldham Simtronics S.A.S.

All of the information that is provided in this document is accurate to the best of our knowledge.

As a result of continuous research and development, the specifications of this product may be changed without prior notice.

TELEDYNE Oldham Simtronics S.A.S. Rue Orfila C.S. 20417 F – 62027 ARRAS

Designed for safety - made for life

T .	•	•	CT			
Lam	11 a 1	ion	ot I	.12	า 1 ไ	1tv
	I tu	11 011	\sim 1		_ 11	1 t y

	The Company TELEDYNE OLDHAM SIMTRONICS S.A.S., hereinafter referred to as "OLDHAM SIMTRONICS" throughout this document, shall not be held responsible for any damage to the equipment or for any physical injury or death resulting in whole or in part from the inappropriate use or installation of the equipment, non-compliance with any and all instructions, warnings, standards and/or regulations in force.
	No business, person or legal entity may assume responsibility on behalf of OLDHAM SIMTRONICS, even though they may be involved in the sale of OLDHAM SIMTRONICS products.
	OLDHAM SIMTRONICS shall not be responsible for any direct or indirect damage, or any direct or indirect consequence, resulting from the sale and use of any of its products UNLESS SUCH PRODUCTS HAVE BEEN SELECTED BY OLDHAM SIMTRONICS ACCORDING TO THE APPLICATION.
O	wnership clauses
	The drawings, specifications, and information herein contain confidential information that is the property of OLDHAM SIMTRONICS.
	This information shall not, either in whole or in part, by physical, electronic, or any other means whatsoever, be reproduced, copied, divulged, translated, or used as the basis for the manufacture or sale of OLDHAM SIMTRONICS equipment, or for any other reason without the prior consent of OLDHAM SIMTRONICS.
W	arning
	This is not a contractual document. In the best interest of its customers and with the aim of improving performance, OLDHAM SIMTRONICS reserves the right to alter the technical features of its equipment without prior notice.
	READ THESE INSTRUCTIONS CAREFULLY BEFORE THE FIRST USAGE: these instructions should be read by all persons who have or will have responsibility for the use, maintenance, or repair of the instrument.
	This instrument shall only be deemed to be in conformance with the published performance if used, maintained, and repaired in accordance with the instructions of OLDHAM SIMTRONICS by OLDHAM SIMTRONICS personnel or by personnel authorized by OLDHAM SIMTRONICS.
	This device has been designed to use in industrial environment, this product may cause radio interference in which case the user may be required to take adequate measures.
In	aportant Information
	The modification of the material and the use of parts of an unspecified origin shall entail the cancellation of any form of warranty.
	The use of the unit has been projected for the applications specified in the technical characteristics. Exceeding the indicated values cannot in any case be authorized.
	OLDHAM SIMTRONICS recommends regular testing of fixed gas detection installations (read Chapter 7.2).

Warranty

☐ Under normal conditions of use and on return to the factory, MultiTox detectors carry a 1-year warranty excluding accessories such as tilt mount, weather protection, etc.

Destruction of the equipment

European Union (and EEA) only. This symbol indicates that, in conformity with directive DEEE (2002/96/CE) and according to local regulations, this product may not be discarded together with household waste.

It must be disposed of in a collection area that is set aside for this purpose, for example at a site that is officially designated for the recycling of electrical and electronic equipment (EEE) or a point of exchange for authorized products in the event of the acquisition of a new product of the same type as before.

1.	Pro	duct description	7
	1.1.	Application	7
	1.2.	DGi-TT7-E	8
	1.3.	DGi-TT7-0	8
	1.4.	DG-TT7-S	. 8
	1.5.	Heating (DGi version)	8
	1.6.	Technical specifications	9
	1.7.	Detection cartridge	10
	1.8.	Communication Interface	10
	1.9.	Product Code	12
2.	Tec	hical features	15
3.	Sca	les and technical data	19
4.	Inst	allation	21
	4.1.	Positioning	21
	4.2.	Assembly	21
	4.3.	Electric Connection	24
	4.4.	Detection cartridge	31
5.	Con	nmissioning	33
	5.1.	Visual inspection	33
	5.2.	Power-up	33
	5.3.	Operational tests	33
6.	Ope	ration	35
	6.1.	Environmental conditions	35
	6.2.	Inhibition	36
	6.3.	Signal current loop	36
	6.4.	Alarm indication	37
	6.5.	Display indication	38
	6.6.	Wireless communication tool TLU600	39
	6.7.	Information menu [INFO]	42
	6.8.	Adjustment menu [ADJT]	43
	6.9.	Maintenance menu [MAIN]	50
7.	Mai	ntenance	
	7.1.	Power off / opening of housing	51
	7.2.	Periodic maintenance	
	7.3.	List of main faults	52
	7.4.	Replacing the cartridge	53
	7.5.	Replacing the complete detector	
8.	CEF	RTIFICATIONS AND STANDARDS	

		_
8.1.	Functional Safety	55
8.2.	ATEX / IECEx Marking	55
8.3.	Accessories	57
8.4.	Spare parts	59
8.5.	Gas table codes & range table codes	60
9 Dec	claration of conformity	63

1. PRODUCT DESCRIPTION

The DGi-TT7-E is designed to monitor poisoning risk induced by the presence of toxic gases or vapours (hydrogen sulphide, carbon monoxide, ammonia...).

The DGi-TT7-0 is designed to monitor the oxygen concentration in %vol either for inerting (scales 1 or 5%vol.) or in breathable atmosphere control (Scale 0-25%vol).

Both versions are equipped with electrochemical cells.

The DGi-TT7-S is designed to monitor poisoning risk induced by the presence of toxic gases or vapours, such as hydrogen sulphide. This version is equipped with semiconductor cells.

Detectors can be connected to a large range of controllers or PLC.

These detectors may be configured using the portable communication terminal (TLU600) in ATEX areas, providing flexibility to the user.

These detectors can be configured also using the Hart portable terminal TLH700 (in option).

MultiTox are also available for use in an addressable network system with distributed intelligence SYNTEL. For more information, please refer to the Syntel module interface operating manual.

1.1. Application

The DGi-TT7 and DG-TT7 are suitable for indoor or outdoor use and offer a fast response time. Typical applications include:

- Storage of toxic products
- Monitoring of processes with toxic products
- Oxygen detection in inert atmosphere (DG-TT7-0)
- Chemical and petrochemical plants
- Drilling platforms
- Refineries

1.2. DGi-TT7-E

The DGi-TT7-E is a MultiTox detector based on a transducer with electrochemical cell, which requires oxygen to function properly.

The measuring principle is based on a redox reaction.

In the event of a long period without oxygen, the measurement will not be representative of gases or vapours concentration.

The characteristics of the device can also be altered by exposures to high concentrations or by extended periods in hot and dry atmosphere.

1.3. DGi-TT7-0

The DGi-TT7-0 is a MultiTox detector based on a transducer with electrochemical cell. The measurement range is expressed in %vol 0_2 .

The measuring principle is based on one of the principle of the « oxygen cell ».

Characteristics of the device can also be altered by exposures to extended periods in hot and dry atmosphere.

1.4. DG-TT7-S

Le DG-TT7-S is a MultiTox detector based on a transducer with semi-conductor cells, which requires oxygen to function properly. It is used mainly for hydrogen sulphide detection in difficult industrial environment.

The measuring principle is based on oxidation and adsorbing reactions on films surface of heated semi-conductor.

This sensor uses a sensitive element that only requires half-yearly calibration and does not require any injection of high concentration gas to reactivate his sensitive element.

The measurement will not be representative anymore of the concentration of gases or vapours if the detector is exposed too long time without oxygen or in a very dry atmosphere.

Characteristics of the device can also be altered by the presence of some poisons, such as silicon vapours.

1.5. Heating (DGi version)

In hard environmental conditions, with condensation or frost, gases and vapours may not reach the sensor. The device takes into account this difficulty and keeps its temperature slightly above that of the ambient atmosphere.

1.6. Technical specifications

Each detector is constructed as follows:

- A wall-mounted support secured by three screws and including cable gland (M20) (optional). There are 2 standard entries and an optional one.
- A stainless steel explosion-proof housing containing:
 - A set of tropicalized electronic cards
 - A display and infrared communication electronic card. Allowing the communication with the remote control (TLU600)
- A colour coded cartridge with a label located in the lower part of the detector, a green
 one for the toxic gas detectors with electrochemical cell (DGi-TT7-E), a blue one for
 the oxygen deficiency gas detectors with electrochemical cell (DGi-TT7-O) and an
 orange one for semi-conductor toxic gas detectors (DG-TT7-S)

The cartridge is connected to the detector's body by an open ring leaving the label visible.

A colored ring enables the identification of the device type at a larger distance.

• A metallic support cable (optional) connects the wall mounting support and the housing, which makes the maintenance easier.

Figure 1: Layout drawing

(Outline drawing - see Figure 1 :)

1.7. Detection cartridge

Detection cartridges are:

- Intrinsic safety "ia" for the DGi-TT7-E- and DGi-TT7-O versions. They can be removed when the detector is powered.
- Explosion proof "d" for the DG-TT7-S versions. They cannot be removed when the detector is powered.

They are common to all Oldham Simtronics MultiTox products in order to reduce the number of spares parts.

- DGi-RT7-E / DGi-RT7-O et DG-RT7-S: Network versions for Syntel loop,
- DGi-TT7-E / DGi-TT7-O et DG-TT7-S: « Telecapteur » versions,

Storing electrochemical cartridges (green or blue label) for long periods is not recommended, as their lifetime is short. Cartridges should be used within 6 months (from the date of purchase).

In order to guarantee the metrological characteristics of the device, the cartridges must be stored in their original packaging until commissioning and in clean atmosphere (no vapor of solvant). For a long-term storage, the cartridges will be stored in a dry place, between 0°C and 20°C.

After a long storage period, more than one month, the cartridge will be stabilized for several hours, in order to perform the nominal characteristics.

1.8. Communication Interface

1.8.1. Wireless Configuration Tool

Information and status of the detector are available via the wireless configuration tool TLU600/610.

Configuration and tests are performed using this wireless configuration tool (IrDA protocol). This tool is common for all Oldham Simtronics MultiFlame, MultiXplo and MultiTox products.

The TLU600/610 provides access to devices that, otherwise, would require major logistic operations for maintenance or for configuration (calibration...).

For more details, please refer to the wireless configuration tool operating manual.

1.8.2. HART communication

The HART communication authorizes an addressing of devices, allowing the communication in read/write mode.

It consists in getting connection on the current loop on which the numerical data are superimposed.

Most of the HART terminal can read these information and send commands

The use of a DD (Device Descriptor) facilitates the interface Man-Device. It can be uploaded on our website.

OLDHAM SIMTRONICS devices under HART protocol enable the use of all the functions available with the TLU600 via the HART terminal

See the document D1401002 for the using of Hart terminal TLH700 (the Detector Device Descriptor must be downloaded).

1.9. Product Code

Product codes are created from functional codes defined as below:

т 1	Г	7	3	31	AF	-S		Х	Н	-C	0	-00J	-0	-C		-0
										Cartric	iges					
										0*	No car	tridge or not	specified o	r flame		
DGi-TT7-O / Dmi-TT6-O						M*		chemical ty								
										G*		chemical ty				
Dg	i-TT7	'-E / Dn	ni-T1	T6-E /	DGi-TT	7-0 / D	mi-T	T6-O		Y*		chemical ty				
		D	G-T	T7-X /	/ DM-TT6	S-X				X*	Cataly	chemical ty	pe N			
										S*	-		eneral desig	nation for	semi	conductor type (
		D	G-T	T7-S /	DM-TT	6-S				F*		conductor ty				
										C*	Semi-c	conductor typ	pe 31 since	2015		
		D	G-T	T7-K	/ DM-TT	6-K				K*	Cathar	ometer				
										E*	EX05,	EX09 (exter	nal)			
										L*	SX202					
										T*	SX202					
		Half W	/hea	tston	e bridge	probe	s			U* V*	SX202					
										H*	SX202 MTHX					
										J*		(/ , E, N, N	E)			
										W*	SD122	•				
										Z*	SD122	2-01				
		_	nc T	FT7 1 /	/ DM-TT6	2.1				D*	Infrare	d type D				
		-	DG-1	117-17	DIVI-110)-I				P*	Infrare	d type P				
											Semic	ond.Senso	r type & spe	ecial conf	igura	tions
											*0		ed or standa	ard		
											*A 20					
												*B 23 *C 24				
			D	G-TT	7-S / DM	I-TT6-9	3				*D 25					
											*E 27					
											*F	30 (become obsolete to release *R association)				
											*K	· ·				
											*M	Special ve	rsion MarED	(TX6 and	d TV6	in type A only)
Options											*N		Special version with ALRM LED not memorized (not in compliance with EN 54-10) (flame version only)			
											*R	With relay	board for H\	N type D	(gas)	
											*T	MTHX-S (E	ET)			
											*X	SX202 (EX)				
Ot											*1	Customize	d EPR (spe	cial follow	up, S	P4M20)
Customized	ı vers	ions									*2	(DM and D	Mi only)			
											_	Configura	tion			
											ŀ		Standard			
											ŀ	**A	Absolutely n	o grease		
											ŀ	**B	Special vers	ion MarE	O (old	code)
						-	**C 1	TX6 and TV Not EN 54-1 ALRM LED)	0 complia	ant ve	nsion (not latche					
								RDA cap in:								
								_ t	OV not conn type C FCM02 inste			ng ground on To				
											-					lear applications
											}	**H \$	•	t : light gr	ey (10	A03 according
											ŀ		Special pain			
											ļ					e gland input
											ŀ					
										L Paint thickness > 200 μm(ATEX version						

Lan	guage	guage					
0	Fr / GB						
F	Fren	ıch					
Е	Engl	ish					
Р	Port	ugues	е				
С	Chinese						
	Hard	ardware version					
	Α	Тур	e 63				
	В	Тур	e 65				
	С	Тур	e 67 (HART)				
	D	Тур	e 69 (magnet)				
		Software version					
		0	Standard				

2. TECHICAL FEATURES

GENERAL

Type Gas detector

DGi-TT7-E MultiTox (electrochemical for toxic components)

DGi-TT7-0 MultiTox (electrochemical for measurement of oxygen)

DG-TT7-S MultiTox (semi-conductor for toxic components)

DGi-RT7 / DG-RT7 Network detector

Calibration¹ Factory set. A test is recommended every 3-4 months on

DGi -TT7-E and DGi-TT7 and every 6 months on DG-TT7-S.

OUTPUT SIGNALS

Loop 4-20mA signal Type active (source) maximum load impedance 700Ω

« 4-20mA » format 4-20mA with one fault level

(Factory set) - 0% full scale 4 mA

- 100% full scale
 - 105% full scale
 - Fault or inhibition
 20 mA
 20.8 mA

« 0-22mA » format 4-20mA with several fault levels, for PLC and some recent

control units

- 0% full scale
- 100% full scale
- > 105% full scale
- Inhibition
- Fault measure
- Device fault (HW/SW)
4 mA
20.8 mA
3.4 mA
2.6 mA
2.0 mA

Output relays 2 x configurable relays max 1A / 30V AC/DC

ELECTRICAL

Power supply 24VDC, (18 – 28 V DC on versions DGi-TT7 or DG-TT7-S)

(18 - 30 V DC on versions DGi-RT7 or DG-RT7-S)

MultiTox : DGi-TT7-E/0 & DG-TT7-S Page 15 / 68 NOSP 16452-Rev 06

¹ These frequencies of calibration control are provided for information purposes only. The frequency depends on the operating conditions, the experience and safety requirements.

Consumption

	DGi-TT7	DG-TT7-S
typical ²	1.4 W	2 W
	Network : 2.4 W	Network : 3.2 W
maximum	10W	5W

Wiring 0,5mm² (20AWG)-1,5mm² (16AWG)

MTBF 100 000 h (Version DGi-TT7-E/O out of the EC cell)

136 100 h (Version DG-TT7-S including the cell, SIL2 cetified)

ENVIRONMENT

Storage temperature see Operating (without cartridges)

5°C / 20°C with the cartridges type -E or -O

Please refer to comments on storage conditions - §1.7

Operating Please refer to table §3

Pressure 1013 Hpa ± 10%

Humidity 15 - 90% RH non condensing (version DGi-TT7-E/0)

5-100% RH non condensing (version DG-TT7-S)

Protection IP66

RFI/EMI EN 50270

Heating time³ 60 sec to 120 sec depending on the version

Stabilization time stabilization time 1st implementation or up to 24h after being

powered off:

DGi-TT7-E : 2 hoursDGi-TT7-O : 10 min

DG-TT7-S: 16 to 24 hours

EXPLOSION PROOF HOUSING

Material Stainless steel 316 L

Weight 4.0 kg

ATEX/IECEx: Please refer to §8.2

MultiTox : DGi-TT7-E/0 & DG-TT7-S Page 16 / 68 NOSP 16452-Rev 06

 $^{^2}$ Typical power: voltage 24 Vdc, current 4 mA, display brightness 20%, temperature > 5°C (heating not activated), 1 relay activated

Maximum power: voltage 30 Vdc, current 22 mA, maximum display brightness, 2 relays activated, maximum heating

³ The indicated warm-up time corresponds to the duration of inhibition measurement when powered on. It prevents from triggering alarms while signal is reaching its stabilised level. Nominal performances might be reached only after a stabilisation period.

DIMENSIONS

Figure 1 : Outline drawing (mm)

FUNCTIONAL SAFETY (DG-TT7-S)

SIL

SIL certified based on IEC/EN 61508 part 1 to 7 (2011) standards Certification delivered by LCIE Bureau Véritas

- The safety function is either integrating the 4/20 mA current loop, as an output, or the relays one
- PFD calculation is based on a 12 months verification frequency and a 5 hours MTTR

Current output

Detector	Datas	Definitions	Values
MultiTox	λ	Failure rate per hour	7.35x10 ⁻⁶ /h
DG-TT7-S	SFF	Safety fraction failure (T1= 12 mois)	91.4 %
	PFD	Probability of failure on Demande	2.80x10 ⁻³
	PFH	Probability of failure / h (1oo1)	6.34x10 ⁻⁷
		Mean Time To Repair	
	MTTR	Fault on cartridge	16 min
		Fault on Detector	26 min
		MTTR used for PFD calculation	300 min
	SIL compliance	HFT = 0 / G.Fixed / 30°C / type B	1

Relay output

Detector	Datas	Definitions	Values
MultiTox	λ	Failure rate per hour	7.18x10 ⁻⁶ /h
DG-TT7-S	SFF	Safety fraction failure (T1= 12 mois)	88.9 %
	PFD	Probability of failure on Demande	3.50x10 ⁻³
	PFH	Probability of failure / h (1001)	7.94x10 ⁻⁷
70 E		Mean Time To Repair	
	MTTR	Fault on cartridge	16 min
		Fault on Detector	26 min
		MTTR used for PFD calculation	300 min
	SIL compliance	HFT = 0 / G.Fixed / 30°C / type B	1

3. SCALES AND TECHNICAL DATA

	O ₂	H ₂ S DGi-TT7-E	H₂S DG-TT7-S	NH ₃	со	NO	NO ₂	H ₂	SO ₂	CI ₂	HCI	HCN
Measurement	0-5 %vol	0-20 0-50	0-20	0-50 0-100	0-100 0-200	0-100	0 0-20	0-2000	0-20	0-10	0-50 0-100	0-50
range •	0-25 %vol	0-100 0-200	0-50	0-1000	0-500 0-1000	0-100		0-10000	0-20	0-50		
τ (0-50%) (sec)	< 8	<13	<30									
τ (0-90%) (sec)	< 25	< 35	< 70	< 120	< 35	< 20	< 45	< 70	< 30	< 30 4	< 150	< 60
Zero point stability 9	%vol	± 1 ppm ± 2 ppm	<1 ppm	± 2 ppm ±20 ppm		± 3 ppm	±0.5ppm	±40 ppm ±200 ppm	±0.5ppm	±0.5ppm	± 3 ppm	± 1 ppm
T° range (°C)	-10/+40	-20/+50	-40/+65	-20/+40	-20/+50	-20/+50	-20/+50	-20/+50	-20/+50	-20/+40	-20/+50	-20/+40
Accuracy	5 % Ech.	± 2 ppm ± 10 % reading	± 2 ppm ± 10 %	± 4 ppm ± 10 % reading	± 4 ppm ± 10 % reading	± 4 ppm	± 2 ppm	± 50 ppm ± 5 % reading	± 2 ppm	± 2 ppm	± 4 ppm ± 10 % reading	± 2 ppm ± 10 % reading
● ● ●	4 % Ech	± 4 ppm ± 10 % reading	reading	± 25 ppm ± 10 % reading	± 15 ppm ± 10 % reading	± 10 % reading	± 10 % reading	± 50 ppm ± 5 % reading	± 10 % reading	± 10 % reading		
Lifetime (months)	12 à 18	24	60	24	36	36	24	24	24	24	24	18
Warming-up time or polarisation ❸	< 10 min	< 10 min	< 60 min	< 10 min	< 10 min	< 60 min	< 10 min	< 10 min	< 10 min	< 10 min	< 60 min	< 10 min
Gas injection time (ref)	1'	3'	3'	4'	2'	1'	2'	4'	2'	2'	4'	3'

Table 1: performances

- In ppm unless otherwise indicated.
- 2 Long term stability (21 days) under stable environmental conditions.
- **9** On the range: 0°C to 40 °C.
- 4 < 120 seconds at the 1st exposure.</p>
- **9** The precision is estimated based on replication, linearity and temperature parameters.
- **6** Select the higher value where two tolerances are proposed.
- $oldsymbol{\circ}$ Concerning the 0-100 ppm version, the accuracy is 20% on the range 50-100ppm
- 9 For a 6 hours powered-off time

DG-TT7-S detectors: The silicone compounds are known to have poisoning effects on the semi-conductor element.

DG-TT7-O detectors: High CO_2 concentration (several %vol.) is known to have poisoning effect on the cell. In a similar way, solvents higher than 1000 ppm will gradually damage the cell.

DG-TT7-0 detectors: The measure is proportional to the partial pressure of oxygen in the measured mixture.

Designed	forca	foty -	mada	for	life

4. INSTALLATION

The detectors described in this manual are safety instruments intended to be installed in explosive atmospheres and have been designed in compliance with standards EN60079-0, EN60079-1, EN 60079-11, CEI 60079-0, CEI 60079-1 and CEI 60079-11.

Intervention in some sites may be subject to restrictions that we invite you to follow for your own safety and those of others.

4.1. Positioning

The detector must be positioned as close as possible to sources of potential leakages, taking into account airflows (e.g. upper and lower ventilation). The height is determined by the density of gas to detect.

Generally speaking, a detector will not be placed in front of an air inlet which brings clean air

This height may be adjust to take into account the specific conditions which may interfere on the risk level (gas density, ambient temperature....)

4.2. Assembly

Use the two 7 mm diameter holes and the half slotted hole to secure the support.

It is highly recommended to install the support with cable-gland downward in order to avoid water infiltrations. In case of horizontal position, it is advised to make one or two loops with the cable at the entry of the cable-gland.

When mounting the cable gland (optional), if no tightening torque is specified by the manufacturer, consider than a tightening torque of 20N.m + /-10% is the most suitable.

On stainless steel housings, plugs are sealed with Loctite. If the plugs are moved or removed, it must be sealed again, using Loctite or equivalent.

Figure 2: Drilling dimensions for support fixing.

4.2.1. Detector assembly

Check the presence and the good condition of the O-ring on explosion proof seal (no cracks, no cuts, good elasticity), make sure the flamproof joint is correctly greased and has no visible damage.

Fit the main housing on the base, placing the cable excess in the base. Put in place and tighten the four M5 screws with their grower rings.

It is possible to set up a suspension cable (not supplied) between the base and the housing (at the lower part) with two threaded holes $(M4 \times 6)$.

4.2.2. Cable's inputs (as an option)

Connection cables must pass through a cable gland (Explosion Proof certified)

For installation details, refer to the instructions provided by the manufacturer of the cable gland used.

The unassigned cable glands entries must be blanked with explosion proof certified plugs (M20). They are glued with Loctite (type tubétanche 577) or equivalent compound. If a plug is moved or removed, it must be glued again with Loctite or an equivalent.

4.2.3. Communication using the TLU 600

Communication elements are located above the display.

The orientation enables a communication with an $\frac{1}{2}$ horizontal angle about 35°, an $\frac{1}{2}$ vertical-up angle about 30° and a vertical-down angle about 50°.

The maximum communication distance is between 7 to 9 m.

4.3. Electric Connection

Never adjust electric connections when detectors are powered. Maintenance must be undertaken by qualified staff. Observe safety site rules.

MultiTox are sensors with standard current output 4-20mA or 0-22mA. The connection can be on 3 or 4 wires. The 4 wires configuration allows insulation between the signal and power loops.

In addition, two independent relays outputs can be connected directly to a controller or signal device.

We recommend using an armoured and shielded cable, type NF M 87 202, in accordance with the requirements for hazardous areas and NF C 15 100. Other cables can be used if they are compliant with the local regulations and standards.

The table below shows the maximum cable lengths in meter (ft) based on the wire cross section and the supply voltage delivered by the detection unit.

Min. single wire cross section mm²/AWG	0.5 (20)	0.9 (18)	1.5 (16)
Supply voltage 24VDC / consumption power ≤ 2W	580 (1900)	1000 (3280)	1000 (3280)
Supply voltage 24VDC -10% / consumption power ≤ 2W	340 (1110)	600 (1960)	1000 (3280)
Supply voltage 24VDC / 2W < consumption power ≤ 3.5W	330 (1080)	580 (1900)	1000 (3280)
Supply voltage 24VDC -10% / 2W < consumption power ≤ 3.5W	200 (650)	340 (1110)	600 (1960)
Supply voltage 24VDC / 3.5W < consumption power ≤ 5W	230 (750)	400 (1310)	710 (2320)
Supply voltage 24VDC -10% / 3.5W < consumption power ≤ 5W	140 (450)	240 (780)	430 (1410)

NB : Those values are calculated considering the minimum supply voltage at 18VDC at the sensor level

4.3.1. Connection of the electrical ground braid

Use a shield connection clamp (not supplied) to connect the shielding of the cable to the electric ground of the housing (see § below).

4.3.2. Grounding

A M4 screw passes through the body of the enclosure, enabling the electronic ground of the housing to be connected to the local ground.

It is recommended to use a yellow / green wire with a ring lug (section \geqslant others wires <u>and</u> \geqslant 1.5 mm²). The armour of the power cable is normally connected to the ground of the detector, but it may depend on site practices.

4.3.3. Connection

There are three different type of power supply:

- 3-wires connection (source):
 The output current is not isolated from power supply, provided from detector (standard connection).
- 3-wires connection (sink):

 The output current is not isolated from power supply, consumed by the detector
- 4-wires connection :
 The output current is isolated from power supply

NB: The power potentials are isolated from the electric ground of the housing.

<u>Total loop resistance:</u>

Whatever the power supply type (3 wires source ou sink, 4 wires), the total loop resistance (resistor + cable) should not exceed the following value:

$$R maxi = \frac{Power supply voltage - 8V}{22mA}$$

The total loop resistance should not exceed 700 Ω with a voltage of 24Vdc

Terminal blocks

Point	JP11	Description		
1	V-	0 V		
2	V+	+24VDC power supply		
3	V+	+24VDC power supply loop (connected to point 2)		
4	V-	0 V, Connected to point 1		
5	L+	20mA Current loop: entry		
6	L-	20mA Current loop: output		

4.3.3.1. 3-wires connection(source)

In this case, the output current is not isolated from power supply, provided from detector (standard connection).

For a standard 3-wires connection, the 20mA current loop must be supplied with 24 V at terminal L+. To proceed, connect the 3 (V +) and 5 (L +) terminals at the terminal block level of the device

4.3.3.2. 3-wires connection (Sink)

In this case, the output current is not isolated from power supply, consumed by the detector.

For a standard 3-wires connection in sink mode, the 20mA current loop must be supplied with a PLC. The current return must be connected to the 0V at the level of the L- terminal. To proceed, please connect the 4 (V-) and 6 (L-) terminals at the terminal block level of the devise.

Fire or control system Detector JP11 0V return Q +24VDC +24VDC 0 0 0 V+ 0 0 V-20 mA loop +24VDC 0 /lax 700 **Ω** 0 Shielding to be connected to the enclosure 0

4.3.3.3. 4-wires connection (isolated power)

When using a 4 wires connection, the current loop is provided by the input module or PLC. The loop (L + and L-) is optically isolated from the detector. 4-20mA or 0-22mA input module of the PLC has to power up the current loop with, at least 8V at the terminal level.

4.3.4. Relay

Point	JP12 & JP13	Description
1	T2	Relay 2
2	C2	Relay 2
3	T1	Relay 1
4	C1	Relay 1

Only the common and working contacts of the 2 relays are output on the terminal blocks JP12 and JP13.

To facilitate wiring, the same contacts are output on both JP12 and JP13: the contacts are connected together, terminal to terminal.

Each relay can be configured :

- normally closed or normally open. In the last case, the relay are opens when the detector is no longer powered.
- on one or more states of the detector (fault, permanent Inhibition, alarms).

Relays configured at factory setting: refer to 6.8.6.1

For DM-TT6-S version, two terminal blocks are available per relay. The pins are connected to each other, from a terminal to the other one.

4.3.5. EOL Resistor

This applies to ATEX/IEC installations only. The EOL resistor must only be used inside the housing on the terminal block.

The EOL resistor allows to a detection unit equipped with the line control function to ensure the continuity of the relay cable.

The EOL resistor must be placed on the relay contact connector to be monitored.

Maintain a 10mm minimum gap between the resistor and the terminal block or any other neighboring parts.

NB:

The R1 value is given as an indication. It must comply with the following conditions:

- Minimum consumption = 5 Watts
- Maximum dissipation = 2.5 Watts

4.3.6. Syntel connection

In this network version, an electronic board is inserted in the detector body and is used for electric connection.

Connecting the ground terminal should be performed thanks to 3-wire shielded cables.

The connection of power supply wires (4 on side A and 4 on side B).

- Two red wires on V +: +24 V
- Two white wires on V-: 0 V

Connection of the media wires (2 on side A and 2 on side B)

- A red wire on one of the N
- A white wire on the other N (no specific edge)

Figure 3: Connecting drawing of the network versions

For more detail, thanks to refer to the operating manual NOSP 15251

4.4. Detection cartridge

The cartridge is separated from the detector to enable its replacement. Its dismantling is extremely easy and does not need to touch the rest of the unit.

Caution during the assembly and the disassembly of the cartridge on the detector:

- Slide the positioning pin of the cartridge into the corresponding hole in the housing (at the bottom of the receiver).
- Take care to not damage the cartridge connector when tightening the two parts.
- On DGi-TT7-E and DGi-TT7-O versions, these operations can be performed when powered.
- On DG-TT7-S version, these operations imperatively require power to be off

Loosen the locking screw on the side of the nut (see Figure 1), then unscrew the nut, along the first part of the thread. With the nut, pull on the cartridge to remove it and then unscrew the cartridge from the nut.

Cartridges have an identification colour ring (see §1.6).

Insert a new cartridge of the same colour into the case respecting the position defined by the centring pin, screw the nut until it stops ensuring the presence of O-ring. Then, tighten the locking screw.

Switch on the device in order to make the calibration of the new cartridge and the zero adjustment.

Designe	ad for	cof	atri	mada	for	1:4.

COMMISSIONING

5.1. Visual inspection

Make certain that all the operations of the "Installation" chapter have been achieved correctly.

Pay particular attention on installation conformity, check the cables entry, the presence of 0-rings, and the connection of the cartridge.

- The label on the smart sensor indicates the type of detector, the type of gas and the range for which the instrument has been calibrated,
- The cartridge colour must correspond to the type of detector:
 - Green for toxic gas detectors with electrochemical cell
 - Blue for oxygen deficiency gas detectors
 - Orange for toxic gas detectors with semi-conductor cell

5.2. Power-up

The detector is powered through the multichannel detection unit or the Programmable Logic Controller.

- The backlight turns violet
- The display (red) appears. It displays, among other information, the INH which indicates the start-up inhibition and the warming-up remaining time in *min* and *sec.*
- After this warming up time, the backlight turns green and the current concentration is displayed.

5.3. Operational tests

All MultiTox detectors are delivered set and tested. Some additional tests are necessary to check the good working of the loop. Please make sure to have all authorizations needed before running the following operations:

- Check the states/information using the wireless configuration tool (TLU or TLH700),
- Check the alarm levels
- Zero point:
 - If there are no polluting gases or, if necessary, by injecting clean air at 30 l/h using the calibration kit equipped with an air cylinder
- Sensitivity:
 - By injecting a suitable gas mixture at 30 l/h using the calibration kit
- Check the servo controls

Design	ed for	safety	- made	for	life

6. OPERATION

6.1. Environmental conditions

The lifetime of the electrochemical cartridges for toxic gas detector depends on the operating environment related to temperature, humidity and high exposures.

One will take care to avoid long exposures to a hot and dry atmosphere (T° > 30°C and RH<10%), and gas exposures 4 times higher to the scale.

The lifetime of the cartridges for semi-conductor toxic gas detector depends on the operating environment related to certain compounds.

One will take care to avoid exposures to some vapored products as silicone. Moreover, an exposure in area with a low rate of hygrometry for several hours can temporarily damage the sensitivity. In order to retain stability of the factory span calibration, we recommand to leave in place the protection cap with a desiccant packet on the front of the cartridge during storage, shipping or any periods without power lasting more than 1 hour.

Don't forget to remove the protection cap after power ON and before inserting the eventual splash-guard.

Store the protection caps with the desiccant packet in a sealed container (zip-lock bag). Dry the bag before using it again

In general, a dusty and humid atmosphere must be avoided. Indeed, a clogging of the gas barriers is then possible, slowing down or stopping the detection process.

6.2. Inhibition

Maintenance Inhibition is temporary. It appears during power up and maintenance.

Inhibition stops automatically when the operator gets out of the maintenance menus or after 10 minutes if communication with the TLU has been interrupted.

Maintenance inhibition can be configured in "frozen" mode (factory setting) or in "free" mode by the TLU or the Hart protocol.

- In "frozen" mode, outputs (current and relay) remain in their previous state.
 For example, if the device indicated a failure (2.0 mA), this state would be maintained during the inhibition.
- If the unit is configured in "free" inhibition mode, the output current will be on the same level as for the permanent inhibition.

The permanent inhibition is activated by an order issued by the TLU or TLH700 when an operation is performed at/or around the device, or when the operator wants to inhibit a faulty device. The permanent inhibition must be removed by an operator with the TLU or TLH700.In a similar way as the maintenance inhibition, this mode will lead to a purple switch of the backlight.

6.3. Signal current loop

State	"4-20" [mA]	"0-22" [mA]	Display	TLU state	
Line fault	0.0	0.0			
Configuration fault	2.0	2.0	DEF & yellow Backlight	DEF	
Detector fault (electronic)	2.0	2.0	DEF & yellow Backlight	DEF	
Measure fault	2.0	2.6	DEF & yellow Backlight	DEF	
Start inhibition	2.0	3.4	INH & violet Backlight	Warming-up Remaining time including power up	
Permanent inhibition	2.0	3.4	INH & violet Backlight	INH	
Maintenance inhibition	Previous	Previous	INH & violet Backlight	INH	
Fixed configuration (fault) /	value /	value/			
("free mode ") *	(2.0)	(3.4)			
0% of full scale	4.0	4.0	green Backlight 0	No detection No alarm	
25% of full scale	8.0	8.0	AL1 or AL2 if reached	Alarm if level exceeded	
50% of full scale	12.0	12.0	AL1 or AL2 if reached	Alarm if level exceeded	
75% of full scale	16.0	16.0	AL1 or AL2 if reached	Alarm if level exceeded	
100% of full scale	20.0	20.0	& red Backlight 100 -	Alarm	
105% of full scale	20.8	20.8	AL2	Alarm	

^(*) Maintenance inhibition may be available in frozen or free mode.

Display time:

The detector displays concentration or status. Depending on events, the detector displays cyclically important information according to the context: unit, gas, label, fault, alarms, inhibition and the time remaining inhibition....

Output current (4-20mA ou 0-22mA):

It can be modified by the user. See §6.8.6.2 Erreur! Source du renvoi introuvable...

6.4. Alarm indication

When an alarm status is confirmed, the backlight turns red. Moreover, the display indicates the alarm level and the current concentration.

The remaining information which is usually recorded in the display cycle are not provided anymore, in order to keep the detection and current alarm level as a priority.

If the alarm memorization is enabled, the backlight remains red and the alarm indication appears in the display cycle until the alarm is acknowledged with the TLU or TLH700(Hart) or until the detector is powered off, then powered on again.

If the alarm memorization is disabled, the backlight turns green when the alarm fades.

If the device is used in a safety loop in a potentially explosive area (EN60079-29-1), the upper alarm must be memorized, and a manual action must be taken to clear it.

6.5. Display indication

The 4 Digits display provides several information, depending on the state of the device:

STARTING:

- Display cycle: concentration and measuring scale (meas then % or ppm then gas)
- Alternately indicates the inhibition mode and the remaining warming up time

NORMAL OPERATING MODE:

The digital readout provides the following information:

- Concentration
- Measuring scale
- Abbreviation of the gas used
- Label of the device

IN CASE OF ALARM:

- the display of concentration flashes
- alternation with « AL1 » or « AL2 » depending on the levels

IN CASE OF DEFAULT:

• The display shows « DEF »

IN CASE OF INHIBITION:

• The display shows « INH »

The modes of the backlight are:

Green	Normal use, no alarm	
Red	Superior to the alarm level 1	
Yellow	Fault mode	
Violet	Inhibition mode ; maintenance (temporized) or permanent	

At factory setting, the intensity of the backlight and the display self-adapt, depending on the brightness of the environment. The brightness can be adjusted at fixed levels, between 0 (off) and 100%

The electric consumption of the device depends on the background light level (see technical specifications).

6.6. Wireless communication tool TLU600

All settings and tests of detectors can be done by the wireless communication tool TLU600. This communication tool and its software are compatible with all Oldham Simtronics detectors: MultiFlame, MultiTox and MultiXplo. Communication is made via infrared link (IrDA), similar but more efficient than infrared links for computers. IrDA head should not be placed facing the sun as it significantly reduces the communication with the TLU600.

Please refer to the wireless communication tool operating manual for more details.

When a device is in communication mode with the TLU, its background light flashes. It enables the user to ensure he communicates with the requested device.

The TLU600 menu is composed of 2 access levels allowing both settings and obtaining information about detector's status.

level 1 : exploitationlevel 2 : Maintenance

6.6.1. Main screen

The main screen is composed into several data fields.

- C1: Detector name field
- C2: Field blank if normal operation; INH- if inhibited
- C3: Field blank if normal operation; FLT- if at least one fault has occurred
- C4: State of detection: no detection, cartridge fault
- C5: State of alarm: alarm, no alarm
- C6, C7, C8 and C9: Name of keys F1, F2, F3 and F4
- C10: Wireless communication tool pictograms

Main screen displays identity and state of the detector.

6.6.2. General operation

The user can navigate through the menu with the F1 to F4 keys, whose functions change depending on the fields displayed above each key. Standard functions:

- >>>> Scroll function / next screen.
- ESC Exit the current menu and return to the previous one.
- CHG Changing displayed value.
 - VAL Validation and Check-in of the changed value.

The changed value must be confirmed by pressing [VAL] key, otherwise the old value will be kept when leaving the menu.

6.6.3. Menu structure

• Exploitation :

This level enables access to the information and the status of the detectors. It does not allow the configuration operations or write access.

• Maintenance :

The access to the parameters and other maintenance operations is protected by a

6.7. Information menu [INFO]

The information menu contains all information concerning the identity and settings of the detector. The first screen gives the detector's reference and its serial number.

6.7.1. [IDEN]tity submenu

Presentation of:

- The serial number
- The device reference
- The scale and the targeted gas

Sub-menus present the board software version, the power supply voltage and the temperature read in the cartridge.

6.7.2. [OUT]put submenu

Presentation of:

- Current protocol (0-20 mA or 4-20 mA).
- Normal state of the relays (normally open or normally closed).
- Condition of relay activation.

Relays can be set with a level 2 access.

6.7.3. [STAT]e Information submenu

Presentation of:

- Number and value of activated alarm levels.
- List of eventual faults (press F1 key to scroll through the list)
- Possibility to acknowledge alarms

6.7.3.1. [ALRM] Alarm screen

Allows setting of levels and alarms acknowledgement.

6.7.3.2. [FLT.] Fault screen

Displays a list of eventual faults (press F1 key to scroll through the list) and allows their acknowledgment.

6.7.3.3. Network screen: switch state

This menu and its sub-menus are used for the network detector settings. For any further details, please refer to the Syntel system operating manuals.

MODE SCREEN

The first line shows the operating mode of the sensor in the network (logic link test / out of order / emulation).

The second line shows if the network part of the detector is "operating" or "out of order". For any further details, please refer to the Syntel system operating manuals.

NETWORK SCREEN: ALIM

Information displayed:

Voltage A: ON / OFFVoltage B: ON / OFF

For any further details, please refer to the Syntel system operating manuals

6.7.3.4. The INH screen:

This screen is dedicated to verify the inhibition mode configuration (frozen or free). If the access level permits it, it is possible to change this setting.

6.8. Adjustment menu [ADJT]

This menu presents all the detector settings. All the functionalities, except alarm level acknowledgment, request access level 2.

6.8.1. [STAT]us sub-menu

6.8.1.1. Alarm Acknowledgement

This menu enables the acknowledgement of the stored alarms. The alarm can be acknowledged only if the alarm condition has disappeared.

6.8.1.2. Inhibition / End of inhibition

The inhibition (called permanent inhibition) is activated or deactivated manually using the menu. This function is used for deactivating the detector outputs (example: during maintenance).

The « inhibition » menu is available if the sensor is not in inhibition, maintenance inhibition or simulation.

Selecting the inhibition mode will switch the detector in inhibition mode.

The message "End of inhibition" is displayed on the TLU.

Press on "End of inhibition" to get the detector back to normal operating mode.

6.8.2. CALIBRATION sub-menu

6.8.2.1. Zero point setting

The operator can set the zero point with the wireless communication tool TLU600.

The detector is in maintenance inhibition mode for 10 minutes after it goes back to main screen. Use the setting menu and validate the INH command for acknowledgement. Press F4 key to stop communication between TLU600 and the detector.

With DG-TT7-S versions, if the environmental air potentially contains contaminants, the zero point setting should be carried out with a pressurized clean air cylinder. Use the calibration kit with in-line humidifying tube (specific calibration kit). Open the analytic air (30l/h) for 5 min and then start the zero point setting.

^{*} The device doesn't embed battery, it is then not able to keep real time. The date indication for zero or calibration points, as well as the next expected date for similar operations, are entered manually by the operator. Those data are for information only and their update is optional.mise à jour est facultative.

6.8.2.2. Calibration

Calibration must be made with the gas the detector is set to detect, with the SET menu (F2 key) of the wireless communication tool TLU600 and a calibration kit.

The calibration gas should be injected at a flow rate between 30 l/h and 60 l/h. For the DGi-TT7-O version, on a 25%vol scale, ambient air at 21%vol O_2 generally fits.

For DG-TT7-S series, it is necessary to have a humidifier tube into the gas circuit. Use the specific calibration kit.

Open the flow regulator (0.5 l / min), wait for stabilization (about 2-3 min)* and calibrate.

If one wants to carry out another bump test or calibration and expect an <u>accurate</u> measurement, a 60 minutes clean air recovery is considered as a minimum interval. This interval increases up to 90 minutes if the gas exposure has been about 5 minutes and extended to, at least, 2 hours if the gas exposure has exceeded 5 min.

*When the spash guard (AS019) is used with the calibration cup, stabilization time increases slightly (approximately 1 minute) during an injection with cup.

NB: The humidifier tube provided in the calibration kit has to be change when the color becomes dark brown

For DG-TT7-S versions, the H_2S mixture must be in air and not in nitrogen otherwise a significant calibration error is made

The detector is in maintenance inhibition mode for 10 minutes after it goes back to main screen. Use the setting menu and validate the INH command for acknowledgement.

To end of communication between the TLU600 and the detector is done by pressing F4 key on main menu.

NOSP 16452-Rev 06

^{*} The device doesn't embed battery, it is then not able to keep real time. The date indication for zero or calibration points, as well as the next expected date for similar operations, are entered manually by the operator. Those data are for information only and their update is optional.mise à jour est facultative.

6.8.3. [DISP]LAY sub-menu

This menu gives access to the light intensity setting of the backlight and display:

- AUTO: Automatic adjustment depending on the lighting environment
- Level 0 : Backlight is switched off, minimum display
- Levels 1 to 4 : Intermediary levels
- Level 5 : Maximum backlight intensity

6.8.4. Alarm sub-menu

The menu gives access to:

- The number of alarms levels used (0 to 4).
- The trigger's value of the alarm (levels values)
- The alarm's trigger sense (up or down)
- The alarm's memorization (yes/no)

On one hand, the alarm memorization maintains relays and alarm information on the wireless communication tool. On the other hand, the current output and the concentration displayed on the wireless communication tool are always updated with the real concentration

6.8.5. Label and zone sub-menu

This menu allows label and zone's modification. After selecting a label or a zone, the modification function operates in the same manner.

The numeric keys correspond to different alphanumeric characters. For each displayed page, the numeric keys have a different assignment.

Both "Label" and "Zone" fields are free text type for identification of the detector (name and position of the detector).

To edit fields select [label] or [zone].

- Press on the corresponding numeric key to select a figure
- Press [>>] to go to the next figure in the field
- Press [PAGE] to go next page

The label or zone modification must be confirmed by pressing the key VALID, otherwise the modification is not taken into account

6.8.6. [SORT] Output configuration sub-menu

6.8.6.1. Relays configuration

This menu gives access to the configuration of the relay operating mode and to conditions of activations.

State of the relays:

Each relay can be configured:

- Normally open (not energized)
- Normally closed (energized)

Activation of relays:

Each relay can be activated on one or several following conditions:

- Alarm
- Fault
- Inhibition

Factory setting:

• Relay 1: normally not energized, activated on alarm levels

• Relay 2: normally energised, activated by any fault or inhibition

Contacts are then described as below:

Detector status	Relay 1	Relay 2
Detector status	"Alarm"	"Fault"
Normal (no alarm, no fault, no inhibition and detector powered	C1-T1 open	C2-T2 closed
Alarm	C1-T1 closed	C2-T2 closed
Ambiguity function (TX explosimeter only)	C1-T1 closed	C2-T2 open
Fault or inhibition	C1-T1 open	C2-T2 open
Maintenance Inhibition (during maintenance mode)	Depend of configur	ation. See chapter 6.2
Power loss	C1-T1 open	C2-T2 open

6.8.6.2. Output current configuration

This menu allows you to switch the format of the output current between 4-20 mA and 0-22 mA.

Factory setting: the output current is 4-20 mA

6.8.7. [INH]ibition submenu

Maintenance inhibition can be configured in « frozen » mode (Factory setting) or « free » mode.

• In « frozen» mode, the outputs (current and relay) remain in their previous state.

- For example, if the device displays a fault (2.0 mA), it will remain in this mode during the inhibition
- If the device is configured in « free » mode, the current output will remain at the same level than the permanent inhibition

6.9. Maintenance menu [MAIN]

The maintenance menu allows the user to check if the detector is in normal operation conditions

(Test of the relay and current outputs).

6.9.1. [TEST] sub-menu

6.9.1.1. Relay menu

This menu gives access to activation or deactivation of the relays.

The detector switches to inhibition mode. The detector will stay in inhibition mode if the user goes back through the steps to the main menu. Otherwise, the detector will return to its "current" state.

6.9.1.2. The 4-20 mA screen

This menu allows the output current to be set at a chosen value. The possible output values are: 2mA, 4mA, 8mA, 12mA, 16mA, 20mA or 22mA.

During this phase, the detector switches automatically to inhibition mode. The detector will stay in inhibition mode if the user goes back through the steps to the main menu. Otherwise, the detector will return to its "current" state.

6.9.2. NETWORK sub-menu

This menu gives direct access to different tests for the network. For any further details, please refer to the additional network operating manual:

- SPIN sends the detectors network identification.
- LIEN switches from normal mode to logic link mode.
- SWITCH enables the switches to go on mode open/closed/open secured.

7. MAINTENANCE

The interventions described in this chapter must be performed by competent and qualified staff. Device performances may be affected if the present instructions are not respected.

Cartridge replacement (DG-TT7-S only) and any other operation, imperatively require power to be off.

Cartridges on DGi-TT7 can be unplugged while power is on.

7.1. Power off / opening of housing

All the power supply wires must be cut to put unpowered the detector

7.2. Periodic maintenance

Calibration control periodicity are provided for information purposes only. The frequency depends on the operating conditions, the experience and safety requirements.

7.2.1. Preventive maintenance

A test is recommended every four months for the DGi-TT7-E or DGi-TT7-O versions, and every six months for the DG-TT7-S version.

Run a calibration if necessary. A zero point calibration with clean air (nitrogen for the DGi-TT7-O versions) has to be done first.

We recommend to use a mixture of the target gas with a 50% of the measuring range concentration. The complement of the mixture should, preferably, be Air (this is imperative for the DM-TT6-S version).

For any other operation, please contact your supplier or our technical services.

7.2.2. Corrective maintenance

If the detection unit or the PLC signals a detector fault, the detector must be tested directly with the wireless communication tool to determine the type of fault.

If the detector is configured in 0-22 mA output, it is possible to have a pre-diagnostic of the fault.

7.3. List of main faults

In addition of the current loop faults, other information are available from the wireless communication tool TLU600 (refer to $\S6.6$). If the detector does not work properly, the following table can help you to determine the causes and effects of different possible

FAULTS	CAUSES	SOLUTIONS
Backlight display	Power supply failure	Check the power supply (18 and 28 $\ensuremath{V_{\text{DC}}}$) at the detection unit or the PLC output
Switched on	Continuity issue	Check line continuity
No 4-20 mA / 0-22 mA	Power supply failure	Check the power supply (18 and 28 V_{DC}) at the detection unit or the PLC output
signal 3-wire cabling	Continuity issue	Check line continuity
Wire cubing	No shunt between V+ and L+	Place the shunt
No 4-20 mA / 0-22 mA signal 4-wire cabling	Power supply fault	Check the loop with an ammeter.
ZERO_FAULT (Zero point fault)	Zero point resetting impossible	Fault memorized, even on a power supply shut down. To acknowledge this fault, make a full calibration (in general, the sensor needs to be replaced).
DRIFT_FAULT (Zero point drift)	Sensor drift: the measure is below - 10%	Non-memorized fault. Automatic acknowledgement when the measure goes back above -10%. Resetting the zero point is necessary.
CALIB_FAULT (Calibration fault)	Calibration resetting impossible	Memorized fault, even on a power supply shut down. To acknowledge this fault, make a full calibration (in general, the sensor needs to be replaced).
SELFTEST_FAULT SENSOR_FAULT (Fault material) Material trouble (electronic pa failure) on the sensor or on the electronic board of the detector This fault is triggered if there is r sensor in the detector.		Non-memorized fault. Automatic acknowledgement when the detector is back to normal operation conditions. An electronic failure of the detector hardly happens. Replacing the cartridge will solve the problem most of the time.
TEMPERATURE_FAULT Temperature fault)	Temperature sensor is out of order or disconnected. The temperature sensor is in the cartridge.	Non-memorized fault. Automatic acknowledgement when the detector is back to normal operation conditions. Replace the cartridge.
No wireless	Detector unpowered	Check that the display is lighted
communication tool connection	Dialogue problem	Check the wireless communication tool by using it on another detector.
Detector fault (Material fault)	Electronic fault	Replace the detector

troubles.

7.4. Replacing the cartridge

Follow the instruction in § 4.4.

7.5. Replacing the complete detector

If the operator needs to replace the complete detector, the easiest way is to take off the main housing from the base of the detector (for more details, refer to § 4.2.1).

As the base of the detector remains in place, cable glands do not need to be dismantled. If the detector is not replaced immediately, the "open" base must be protected against humidity, dust and shocks

No intervention should be performed while power is ON.

Designed	forca	foty -	mada	for	life

8. CERTIFICATIONS AND STANDARDS

8.1. Functional Safety

DG-TT7-S is SIL2 certified: LCIE SF-*-T-20160617R0

Calculation hypothesis:

- MTTR = 5 hours
- *HFT = 0*
- T1 (maximum periodic test interval)) = 12 mois

IEC 61508 part 1 to 3	Functional safety of electrical/electronic/	programmable
TEC 61306 part 1 to 3	electronic safety (SIL 2)	

In order to maintain the SIL level, the output current 4-20 mA or the output relay (if it is used) must be check every 12 months.

8.2. ATEX / IECEx Marking

The detector identification label is placed on the main housing, according to directives ATEX 2014/34/UE

- Manufacturer Oldham Simtronics

- Model DGi-TT7...

DG-TT7...

- Serial Number S/N: xxxxxxxxx (xxxxaamm)

DGi-TT7

- Type of certification CE0080 (Ex) II2G / Ex db ia IIC T6 Gb

CE0080 (Σ) II2G / Ex db ia IIB T6 Gb (2 mm > Paint thickness > 200μm) version : DG-T*7-***-**-**-**-**

-40°C < Ta < + 60°C

- Certificate number ATEX : LCIE 13 ATEX 3024X

IECEx LCIE 13.0021X

- Warning - Do not open when energized.

- Ingress rate IP66*

- Maximum power supply voltage 30 Vdc

- Maximum consumption 15 w

DG-TT7

- Type of certification CE0080 Ex II2G / Ex db IIC T6 Gb

CE0080 $\stackrel{\text{(E)}}{\text{(2 mm > Paint thickness > } 200 \mu m > }$ version : DG-T*7-***-**-*L*-*-*)

-40°C < Ta < + 65°C

- Certificate number ATEX: LCIE 11 ATEX 3081X

IECEx: LCI 11.0060X

- Warning - Do not open when energized.

- Ingress rate IP66*

- Maximum power supply voltage 30 Vdc

- Maximum consumption 5 w

* IP rating does not mean that the equipment will detect the gas during or after exposure to the defined conditions.

It is also recommended to use the device with the following accessories: AS056-250, AS019, AS015.

Oldham Simtronics don't allow any repairs of O-rings and shall not be responsible for any modification of material.

Accessories and spare parts

8.3. Accessories

Accessories	Designation	Description	Part Number
	IRDA Remote control unit	Required for adjustments and maintenance	TLU 600
42	Remote control unit HART	Avalaible for adjustments and maintenance	TLH 700
	Adapting Plate (BT05-BT606-BT10)	Used to adapt old detector (BT05-BT606) attachments to fit new generation detectors (BT10 : DG, DGi)	AS049
	Calibration cup	Fits all cartridges	AS005 0 9
+ +	Tag plate	For on-site identification of detectors	AS215
	Calibration kit	 One air cylinder and one pressurized cylinder containing a mixture of air and a gas of titrated concentration, A 30 l/H flow rate pressure reducing and regulating valve, A 3 meter pipe. The calibrating cup is not included in the cakit except for H₂ DM-TX6-X 	CAL-K##
	Filter support	For use in certain situations with molecular filters in order to block out interfering gases.	AS015 2
	Remote calibration Accessory enabling a gas supply tube to be attached near the cartridge.		AS016 ❶
	Stainless steel sample flow with 2 ways	For use with gas circuit systems.	AS011-2X ①
	Duct mounting	A series of accessories for installing detectors on different types of ducts	AS02x ❶

0	Water, sand and dust protection	Adaptation to all cartridges, the assembly is directly in front of cartridge thanks to the nut of maintain (black on version -A).	AS019 ⑤
	Suspension cable enclosure/body	Enables to connect the enclsure with the body during the maintenance operations	AS052
	Tube mounting adapter	Enables DM-T#6, DMi-TT6, DG-T#7, DGi-TT7 et GD10P lines to be mounted on a 2 inch to 2.5 inch diameter tube	AS053
	Display protection	Enables to protect the infrared communication zone in order to better the dialog with the TLU in full sun	AS047
	Multipostion socket (wall or tube mounting)	Enables to fix the device from the top. Can be orientated in all directions.	AS048
	Weather protection (wall or tube mounting)	Dedicated to protect apparatus from sun / rain / snow.	AS056-250 4
	IRDA cap	Replaces the display and its backlight by a fixed IRDA communication head	Configuration usine type 00D : DG-**7-****-***-00D-*-*-*

- Detector sensitivity is not modified, response time depend on the flow rate used for injection. A flow rate between 0.5 L/min and 1 L/min should comply with "standard" response time.
- ② Detector sensitivity is not modified; response time can increase depending on the molecular filter used.
- Detector sensitivity is not modified, response time (T90) (natural diffusion condition) during the gaz exposure, is increased by 5%. When returning to air, T90 increase by 45%
- Detector sensitivity and response time are not modified.
- **⑤** This accessory is included into the EN60079-29-1 Performance Certificate.

Wipe non-conductive parts (plastic) that can use in ATEX area with a damp cloth (risk of electrostatic charges)

8.4. Spare parts

• 0-ring spare parts

For the base (All models) - 0-ring kit BT10 For cartridge receiver

• Lubricant for explosion proof seal and thread: MOLYKOTE Brand, reference P40.

• Cartridges toxic gas detectors type -E: DMi-ST6-F1F2-EX0-ww (F1&F2 to be specified, ww to be specified).

• Cartridges toxic gas detectors type -0: DMi-ST6-42F2-EX0-ww (F1&F2 to be specified, ww=G0 or M0).

• Cartridges toxic gas detectors type -S: DM-ST6-F1F2-SX0-ww (F1&F2 to be specified, ww=SF or SA).

8.5. Gas table codes & range table codes

101	F1	Formula	Gas name	Comment	F2	Range
C2H2	01				00	
3	02					
Cathon			•			
65 CaH₀O Ethanol AB 10 ppm 06 CaH₀O Dimethylene AE 20 ppm 07 CaH₀ Propene AF 50 ppm 08 CaH₀O Acetone AG 100 ppm 09 CaH₀ Propane AH 200 ppm 10 i-CaH₀O i-Butane AJ 500 ppm 11 CaH₀O Pentane AK 1000 ppm 12 CaH₀U Hexane AL 2000 ppm 13 CaH₀U Benzene AM 5000 ppm 14 CaH₀U Styrene AP 3000 ppm 15 CaH₀S Styrene AP 3000 ppm 16 CH₂Clb Dichloromethane AB 1000 ppm 16 CH₂Clb Methane (Biogas) BB 2 %Vol 18 CH₂Clb Methane (Biogas) BB 2 %Vol 19 CH₂O Chlorine BA 1 %Vol <			•			
66 C3H₀O Dimethylene AE 20 ppm 07 C₃H₀O Acetone AF 50 ppm 08 C₃H₀O ACetone AB 50 ppm 09 C₃H₀O Propane AH 200 ppm 10 i-C₃H₀O i-Butane AJ 500 ppm 11 C₃H₀O Pentane AK 1000 ppm 12 C₃H₃O Pentane AK 1000 ppm 13 C₃H₃O Bezene AM 5000 ppm 14 C₃H₃O Totuene AN 10000 ppm 15 C₃H₃O Styrene AP 3000 ppm 16 CH₃OH₂O Dichlorimethane AQ 25 ppm 17 CH₃ Methane (Biogas) BB 2 %vol 18 CH₃OH₂O Methane (Biogas) BB 2 %vol 19 CH₃O Methanol BC 5 %vol 20 Cl₂ Chlorine BD 10 %vol </td <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>			•			
OF C ₂ H ₄ Propene						
08 C₃H₀0 Acetone AG 100 ppm 09 C₃H₀ Propane AH 200 ppm 10 F-C₃H₀c isButane AJ 500 ppm 11 C₃H₀c Pentane AK 1000 ppm 12 C₄H₀c Hexane AL 2000 ppm 13 C₃H₀c Benzene AM 5000 ppm 14 C₁H₀c Toluene AM 10000 ppm 15 C₂H₀c Styrene AP 3000 ppm 16 CH₂C Dichloromethane AQ 25 ppm 17 CH₄ Methane (Biogas) BB 2 %vol 18 CH₄ Methane (Biogas) BB 2 %vol 19 CH₄O Methane (Biogas) BB 2 %vol 20 Cl₂ Chlorine BO 10 %vol 21 CO Carbon monoxide (H25 comp) BE 20 %vol 21 CO Carbon dioxide <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
09 C.H₂ Propane AH 200 ppm 10 I-C₄H₁c i-Butane AJ 500 ppm 11 C₂H₁₂ Pentane AK 1000 ppm 12 C₄H₄ Hexane AL 2000 ppm 13 C₄H₄ Benzene AM 5000 ppm 14 CyH₃ Totuene AN 10000 ppm 15 C₂H₃ Styrene AP 3000 ppm 16 CH₂C₂ Dichtoromethane AQ 25 ppm 17 CH₃ Methane BA 1 %Vol 18 CH₃ Methane BB 2 %Vol 20 Cl₂ Chlorine BB 2 %Vol 21 CO Carbon monoxide HE25 compl BE 20 %Vol 21 CO Carbon monoxide HE45 compl BE 20 %Vol 22 CO Carbon dioxide CH4 immune BH 3 %Vol 24 CO₂ Carbon dioxide C			·			
10 I−C ₄ H _{1c} I−Butane AJ 500 ppm 11 C ₆ H _{1c} Pentane AK 1000 ppm 12 C ₆ H _{1c} Hexane AL 2000 ppm 13 C ₄ H ₆ Benzene AM 5000 ppm 14 C ₇ H ₈ Toluene AN 10000 ppm 15 C ₆ H ₈ Styrene AP 3000 ppm 16 CH ₂ Cl ₂ Dichloromethane AQ 25 ppm 17 CH ₄ Methane Biogas BB 2 %Vol 18 CH ₄ Methane Biogas BB 2 %Vol 19 CH ₄ O Methanol BC 5 %Vol 10 Cl ₂ C Chorine BD 10 %Vol 11 CO Carbon monoxide (H2S comp) BE 20 %Vol 12 CO Carbon monoxide (H2S comp) BE 20 %Vol 12 CO Carbon monoxide BF 50 %Vol 13 CO ₂ C Carbon dioxide BF 50 %Vol 14 CO ₂ C Carbon dioxide CH4 immune BH 3 %Vol 15 COCl ₂ C Phosgene BJ 25 %Vol 16 CYM Vinylchloride BM 24 %Vol 17 CTFE CTFE BL 21 %Vol 18 CVM Vinylchloride BM 24 %Vol 19 CVM Vinylchloride BM 24 %Vol 10 F ₂ Fluorine BN 17 %Vol 10 H ₂ S Hydrogen BZ Other % vol 11 H ₂ S Hydrogen sulphide DF 50 %LIE [1] 13 HCN Hydrogen cyanide DF 50 %LIE [1] 14 He Helium DH 30 %LIE [1] 15 HF Hydrogen fluoride DF 50 %LIE [1] 16 MCPE DP 125 %LIE [1] 17 N ₇ Nitrogen EF 20 %LIE [2] 18 n-C ₄ H ₁₀ n-Butane EF 50 %LIE [2] 18 NO Nitroside GC 5 LELm 19 NO Nitroside KA 1 ppm*m 19 CV ₂ CV ₂						
11			· · · · · · · · · · · · · · · · · · ·			
12						
13						
14 CyHB Toluene AN 10000 ppm 15 CxHB Styrene AP 3000 ppm 16 CHxCl₂ Dichloromethane AQ 25 ppm 17 CH₄ Methane BA 1 %Vol 18 CH₄ Methane BB B 2 %Vol 19 CH₄O Methanol BC 5 %Vol 20 Cl₂ Chlorine BD 10 %Vol 21 CO Carbon monoxide BF 50 %Vol 22 CO Carbon dioxide BF 50 %Vol 23 CO₂ Carbon dioxide CH4 immunel BH 3 %Vol 24 CO₂ Carbon dioxide CH4 immunel BH 3 %Vol 25 COCl₂ Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinytchloride BM 24 %Vol 29 F₂ Fluorine BN 17 %Vol 30 H₂ Hydrogen sulphide DE 20 %LIE [1]						
15						
16 CH₂Cl₂ Dichloromethane AQ 25 ppm 17 CH₄ Methane BA 1 %Vol 18 CH₄ Methane (Biogas) BB 2 %Vol 19 CH₂O Methanol BC 5 %Vol 20 Cl₂ Chlorine BD 10 %vol 21 CO Carbon monoxide HF 50 %Vol 22 CO Carbon dioxide BG 100 %Vol 23 CO₂ Carbon dioxide BG 100 %Vol 24 CO₂ Carbon dioxide CCH4 immunel BH 3 %Vol 25 COCl₂ Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %vol 28 CVM Vinylchloride BM 24 %vol 29 F₂ Fluorine BN 17 %vol 30 H₂ Hydrogen sulphide BZ Other %vol <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
17 CH₄ Methane (Biogas) BB 2 %Vol 18 CH₄O Methane (Biogas) BB 2 %Vol 19 CH₄O Methanot BC 5 %Vol 20 Cl₂ Chlorine BD 10 %Vol 21 CO Carbon monoxide BF 50 %Vol 22 CO Carbon dioxide BG 100 %Vol 23 CO₂ Carbon dioxide (CH4 immune) BH 3 %Vol 24 CO₂ Carbon dioxide (CH4 immune) BH 3 %Vol 25 COCl₂ Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F₂ Fluorine BN 17 %Vol 30 H₂ Hydrogen BZ Other % vol 31 H₂ Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen chloride			•			
18 CH₄ Methanel BC 5 %Vol 19 CH₂O Methanol BC 5 %Vol 20 Cl₂ Chlorine BD 10 %Vol 21 CO Carbon monoxide BE 20 %Vol 22 CO Carbon dioxide BF 50 %Vol 23 CO₂ Carbon dioxide (CH4 immune) BH 3 %Vol 24 CO₂ Carbon dioxide (CH4 immune) BH 3 %Vol 25 COCl₂ Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F₂ Fluorine BN 24 %Vol 29 F₂ Fluorine BN 24 %Vol 30 H₂ Hydrogen BZ Other % vol 31 H₂ Hydrogen sulphide DF 50 %LIE [1						
19 CH₀0 Methanol BC 5 %Vol 20 Cl₂ Chlorine BD 10 %Vol 21 CO Carbon monoxide BF 50 %Vol 22 CO Carbon dioxide BF 50 %Vol 23 CO₂ Carbon dioxide (CH4 immune) BH 3 %Vol 24 CO₂ Carbon dioxide (CH4 immune) BH 3 %Vol 25 COCl₂ Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F₂ Fluorine BN 17 %vol 30 H₂ Hydrogen BZ Other % vol 31 H₂S Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen chloride DF 50 %LIE [1] 33 HCN Hydrogen cyanide DF 50 %LIE [1] 34 He Helium DH 30				(Biogas)		
20				(= g = - ,		
21						
22 CO Carbon monoxide BF 50 %Vol 23 CO2 Carbon dioxide BG 100 %Vol 24 CO2 Carbon dioxide (CH4 immune) BH 3 %Vol 25 COCI2 Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE (1) 32 HCl Hydrogen chloride DF 50 %LIE (1) 33 HCN Hydrogen chloride DF 50 %LIE (1) 34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 1				(H2S comp)		
23 CO2 Carbon dioxide (CH4 immune) BH 3 %Vol 24 CO2 Carbon dioxide (CH4 immune) BH 3 %Vol 25 COCl2 Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE [1] 32 HCL Hydrogen sulphide DF 50 %LIE [1] 33 HCN Hydrogen cyanide DF 50 %LIE [1] 34 He Helium DH 30 %LIE [1] 35 HF Hydrogen fluoride DJ 15 %LIE [1] 36 MCPE DP 125 %LIE [1] 37 N2 Nitrogen EE <t< td=""><td></td><td></td><td></td><td>(20 00p)</td><td></td><td></td></t<>				(20 00p)		
24 CO2 Carbon dioxide (CH4 immune) BH 3 %Vol 25 COCl2 Phosgene BJ 25 %Vol 26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen sulphide DE 20 %LIE [1] 33 HCN Hydrogen chloride DF 50 %LIE [1] 34 He Helium DH 30 %LIE [1] 35 HF Hydrogen fluoride DJ 15 %LIE [1] 36 MCPE DP 125 %LIE [1] 36 MCPE DP 125 %LIE [1] 37 N2 Nitrogen EE 20 %LIE [2] 38 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
25 COCl2 Phosgene BJ 25 %Vol 26 X Alt gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen chloride DF 50 %LIE [1] 33 HCN Hydrogen cyanide DG 100 %LIE [1] 34 He Helium DH 30 %LIE [1] 35 HF Hydrogen fluoride DJ 15 %LIE [1] 36 MCPE MCPE DP 125 %LIE [1] 37 N2 Nitrogen fluoride DJ 15 %LIE [1] 38 n-CuH10 n-Butane EF 50 %LIE [2] 39 NH3 Ammonia EG 100 %LIE [2] 40 NO Nitric oxide KA 1 ppm*m				(CH4 immune)		
26 X All gases BK 4 %Vol 27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen chloride DF 50 %LIE [1] 33 HCN Hydrogen cyanide DG 100 %LIE [1] 34 He Helium DH 30 %LIE [1] 35 HF Hydrogen fluoride DJ 15 %LIE [1] 36 MCPE MCPE DP 125 %LIE [1] 37 N2 Nitrogen fluoride DJ 15 %LIE [1] 38 n-C4H10 n-Butane EF 50 %LIE [2] 38 n-C4H10 n-Butane EF 50 %LIE [2] 39 NH3 Ammonia EG 50 %LIE [2]				(GTT IIIIIIaiie)		
27 CTFE CTFE BL 21 %Vol 28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen chloride DF 50 %LIE [1] 33 HCN Hydrogen cyanide DG 100 %LIE [1] 34 He Helium DH 30 %LIE [1] 35 HF Hydrogen fluoride DJ 15 %LIE [1] 36 MCPE MCPE DP 125 %LIE [1] 37 N2 Nitrogen EE 20 %LIE [2] 38 n-C4H10 n-Butane EF 50 %LIE [2] 38 n-C4H10 n-Butane EF 50 %LIE [2] 39 NH3 Ammonia EG 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
28 CVM Vinylchloride BM 24 %Vol 29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE [1] 32 HCl Hydrogen chloride DF 50 %LIE [1] 33 HCN Hydrogen cyanide DG 100 %LIE [1] 34 He Helium DH 30 %LIE [1] 35 HF Hydrogen fluoride DJ 15 %LIE [1] 36 MCPE MCPE DP 125 %LIE [1] 37 N2 Nitrogen fluoride DJ 15 %LIE [1] 37 N2 Nitrogen EE 20 %LIE [2] 38 n-C4H10 n-Butane EF 50 %LIE [2] 39 NH3 Ammonia EG 100 %LIE [2] 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 pp						
29 F2 Fluorine BN 17 %Vol 30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE (1) 32 HCl Hydrogen chloride DF 50 %LIE (1) 33 HCN Hydrogen cyanide DG 100 %LIE (1) 34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 Oxygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44<						
30 H2 Hydrogen BZ Other % vol 31 H2S Hydrogen sulphide DE 20 %LIE (1) 32 HCl Hydrogen chloride DF 50 %LIE (1) 33 HCN Hydrogen cyanide DG 100 %LIE (1) 34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 Oxygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KF 50 ppm*m			•			
31 H ₂ S Hydrogen sulphide DE 20 %LIE (1) 32 HCl Hydrogen chloride DF 50 %LIE (1) 33 HCN Hydrogen cyanide DG 100 %LIE (1) 34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N ₂ Nitrogen EE 20 %LIE (2) 38 n-C ₄ H ₁₀ n-Butane EF 50 %LIE (2) 39 NH ₃ Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO ₂ Nitrogen dioxide KA 1 ppm*m 42 O ₂ Oxygen JB 2 ppm*m 42 O ₂ Oxygen KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KF 50 ppm*m 47 SO ₂ Sulphur dioxide KG 100 ppm*m </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
32 HCl Hydrogen chloride DF 50 %LIE (1) 33 HCN Hydrogen cyanide DG 100 %LIE (1) 34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 Oxygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KE 20 ppm*m 46 R23 Trifluoromethane KF 50 ppm*m 47 SO2 Sulphur dioxide KG 100 ppm*m						
33 HCN Hydrogen cyanide DG 100 %LIE (1) 34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 Oxygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KE 20 ppm*m 46 R23 Trifluoromethane KF 50 ppm*m 47 SO2 Sulphur dioxide KH 200 ppm*m 48 C5H10 Cyclopentane KH 200 ppm*m <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
34 He Helium DH 30 %LIE (1) 35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 Oxygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KE 20 ppm*m 46 R23 Trifluoromethane KF 50 ppm*m 47 SO2 Sulphur dioxide KG 100 ppm*m 48 C5H10 Cyclopentane KH 200 ppm*m 49 VC2 VC2 VC2 KJ 500 ppm*m						
35 HF Hydrogen fluoride DJ 15 %LIE (1) 36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 Oxygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KE 20 ppm*m 46 R23 Trifluoromethane KF 50 ppm*m 47 SO2 Sulphur dioxide KG 100 ppm*m 48 C5H10 Cyclopentane KH 200 ppm*m 49 VC2 VC2 KJ 500 ppm*m						
36 MCPE MCPE DP 125 %LIE (1) 37 N2 Nitrogen EE 20 %LIE (2) 38 n-C4H10 n-Butane EF 50 %LIE (2) 39 NH3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO2 Nitrogen dioxide KA 1 ppm*m 42 O2 0xygen JB 2 ppm*m 43 O3 Ozone KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KE 20 ppm*m 46 R23 Trifluoromethane KF 50 ppm*m 47 SO2 Sulphur dioxide KG 100 ppm*m 48 C5H10 Cyclopentane KH 200 ppm*m 49 VC2 VC2 KJ 500 ppm*m						
37 N_2 Nitrogen EE 20 %LIE (2) 38 $n-C_4H_{10}$ $n-Butane$ EF 50 %LIE (2) 39 NH_3 Ammonia EG 100 %LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO_2 Nitrogen dioxide KA 1 ppm*m 42 O_2 $O \text{ xygen}$ JB 2 ppm*m 43 O_3 $O \text{ zone}$ KC 5 ppm*m 44 PFBA PFBA KD 10 ppm*m 45 R22 Chlorodifluoromethane KE 20 ppm*m 46 R23 Trifluoromethane KF 50 ppm*m 47 SO_2 Sulphur dioxide KG 100 ppm*m 48 C_5H_{10} Cyclopentane KH 200 ppm*m 49 VC2 VC2 KJ 500 ppm*m						
38 $n-C_4H_{10}$ $n-Butane$ EF 50 \%LIE (2) 39 NH_3 Ammonia EG 100 \%LIE (2) 40 NO Nitric oxide GC 5 LELm 41 NO_2 Nitrogen dioxide KA 1 ppm*m 42 O_2 $Oxygen$ JB 2 ppm*m 43 O_3 $Ozone$ KC 5 ppm*m 44 $PFBA$ $PFBA$ KD 10 ppm*m 45 $R22$ $Chlorodifluoromethane$ KE 20 ppm*m 46 $R23$ $Trifluoromethane$ KF 50 ppm*m 47 SO_2 $Sulphur dioxide$ KG 100 ppm*m 48 C_9H_{10} $Cyclopentane$ KH 200 ppm*m 49 VC_2 VC_2 VC_2 VC_2 VC_2 VC_2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
40 N0Nitric oxideGC 5 LELm 41 NO_2 Nitrogen dioxideKA 1 ppm*m 42 O_2 O_2 O_2 O_2 O_2 O_2 43 O_3 O_2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<u> </u>			
44PFBAPFBAKD10 ppm*m45R22ChlorodifluoromethaneKE20 ppm*m46R23TrifluoromethaneKF50 ppm*m47SO2Sulphur dioxideKG100 ppm*m48 C_5H_{10} CyclopentaneKH200 ppm*m49VC2VC2KJ500 ppm*m						• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						• •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						* *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
48 C₅H₁0 Cyclopentane KH 200 ppm*m 49 VC₂ VC2 KJ 500 ppm*m						
49 VC ₂ VC2 KJ 500 ppm*m			· · · · · · · · · · · · · · · · · · ·			
	50	D40	White Spirit		KK	1000 ppm*m

F1	Formula	Coc nome	Comment	F2	Dongo
	romula	Gas name	Comment		Range
51	/	Gasoil		KL	2000 ppm*m
	/	Super 95		KM	5000 ppm*m
	/	Super 98		KN	10000 ppm*m
• .	/	LPG		LH	200 ppm*m/100 %LEL*m
	C ₂ H ₅ Cl	Ethyl chloride		LJ	500 ppm*m/100 %LEL*m
	C ₂ H ₆	Ethane		LK	1000 ppm*m/100 %LEL*m
	C ₃ H ₃ N	Acrylonitrile/Vinyl cyanide		LM	5000 ppm*m /100 %LEL*m
	C ₃ H ₆ Cl ₂	Dichloroethane		ZZ	Other
	C ₃ H ₆ O	Propylene oxide			
	C ₃ H ₈ O	Isopropyl alcohol			
	C ₃ H ₈ O	Propyl alcohol			
	C ₄ H ₁₀ O	Butanol			
	C ₄ H ₆	Butadiene			
	C ₄ H ₈	Butene			
65	C ₄ H ₈ O	Butanal			
66	C_4H_8O	Methyl-ethyl-ketone(MEK)			
67	$C_4H_9O_2$	Ethyl acetate			
68	$C_5H_{10}O$	Methyl-isopropyl-ketone			
69	$C_5H_{10}O_2$	Propyl acetate			
70	$C_5H_{12}O$	Isopentanol			
71	C ₅ H ₈	Isoprene			
72	C ₆ H ₁₀	D-limonene			
73	C ₆ H ₁₂	Cyclohexane			
74	C_6H_{12}	Hexene-1			
75	$C_6H_{12}O_2$	Butyl acetate			
76	C ₇ H ₁₆	Heptane			
77	$C_6H_4(CH_3)_2$	Xylene			
78	$C_7H_{12}O_2$	N-butyacrylate			
79	C_2H_4	Ethylene	(special : low		
			interf.C2H6)		
80	C ₃ H ₈	Propane	(special: low interf. CH4)		
81	CH ₄	Methane	(special : low		
			interf.C3H8)		
82	C ₈ H ₁₈	Octane			
83	CF ₃ -CFH ₂	R134a			
84	/	Kerosene			
85	C_2Cl_4	Tetrachloroethene			
86	C_2H_4	Ethylene	Special customer (EG)		
87	HC lourd	F1850	Special customer		
88	(CH ₃) ₃ COCH ₃	MTBE			
89	H2S + CH4	Hydrogen sulfide + Methane			
SA	Xs	Special combustible gas	App SA		
CS	H2	Hydrogen in Argon	Complement Argon		
	H ₂	Hydrogen in Azote	Complement Azote		

Designed	forca	foty -	mada	for	life

DECLARATION OF CONFORMITY

DECLARATION UE DE CONFORMITÉ

EU CONFORMITY DECLARATION

Réf: UE DGI_NOSP0017345_5.1.doc

Nous, We, Teledyne Oldham Simtronics S.A.S., ZI Est, 62000 Arras France

Déclarons, sous notre seule responsabilité, que le matériel suivant : Declare, under our sole responsibility that the following equipment :

Type / Type	DETECTEUR MULTIGAZ / MULTIGAZ DETECTOR
Modèle / Models	DGI
Marquage / ATEX marking	CE0080
N° attestation CE de type / EC type-examination certificate N°	LCIE 13 ATEX 3024 X
Notification de l'Assurance Qualité de la production / Quality Assurance Notification Number	INERIS 00ATEXQ403
L'organisme notifié en charge du suivi de la Directive ATEX est The notified body in charge of monitoring the ATEX Directive is	INERIS, Parc Alata 60550 Verneuil en Halatte, France
Numéro d'identification / Identification Number :	0080

Est conçu et fabriqué en conformité avec les Directives et normes applicables suivantes : Is designed and manufactured in compliance with the following applicable Directives and standards:

ATEX	Directive 2014/34/UE Directive 2014/34/EU	EN 60079-0:2012+A11 :2013 EN 60079-1 : 2014 EN 60079-11 :2012
CEM	Directive 2014/20/ELL	EN 50270 : 2015

Ce matériel ne doit être utilisé qu'à ce pour quoi il a été conçu et doit être installé en conformité avec les règles applicables et suivant les recommandations du fabricant. This equipment shall be used for the purpose for which it has been designed and be installed in accordance with relevant standards and with manufacturer's recommendations.

A Arras, le 28/04/2020 / Arras, April 28th 2020

AM. Dassonville Certification Responsible

Dass

Teledyne Oldham Simtronics S.A.S. Z.I. EST - C.S. 20417 62027 ARRAS Cedex – FRANCE Tel.:+33(0)) 21 60 80 80 www.teledyneGFD.com

Page 1 | 1

DECLARATION UE DE CONFORMITÉ

EU CONFORMITY DECLARATION

Réf: UE DG_NOSP0017344_6.1.doc

Nous, We. Teledyne Oldham Simtronics S.A.S., ZI Est, 62000 Arras France

Déclarons, sous notre seule responsabilité, que le matériel suivant : Declare, under our sole responsibility that the following equipment :

Type / Type	DETECTEUR MULTIGAZ / MULTIGAZ DETECTOR		
Modèle / Models	DG		
Marquage / ATEX marking	CE0080		
N° attestation CE de type / EC type-examination certificate N°	LCIE 11 ATEX 3081 X INERIS 11 ATEX 0033		
Notification de l'Assurance Qualité de la production / Quality Assurance Notification Number	INERIS 00ATEXQ403		
L'organisme notifié en charge du suivi de la Directive ATEX est The notified body in charge of monitoring the ATEX Directive is	INERIS, Parc Alata 60550 Verneuil en Halatte, France		
Numéro d'identification / Identification Number :	0080		

Est conçu et fabriqué en conformité avec les Directives et normes applicables suivantes : Is designed and manufactured in compliance with the following applicable Directives and standards:

EX	Directive 2014/34/UE	EN 60079-0:2012+A11 :2013 EN 60079-1 : 2014
ATE	Directive 2014/34/EU	EN 60079-29-1 : 2016 (**) EN 50271 : 2010 (**)
	Directive 2014/30/UE	
CEM	Directive 2014/30/EU	EN 50270 : 2015

(**) Uniquement pour les modèles DG-.X7-..DG / Only for DG-.X7-..DG models.

Ce matériel ne doit être utilisé qu'à ce pour quoi il a été conçu et doit être installé en conformité avec les règles applicables et suivant les recommandations du fabricant. This equipment shall be used for the purpose for which it has been designed and be installed in accordance with relevant standards and with manufacturer's recommendations.

A Arras, le 28/04/2020 / Arras, April 28th 2020

AM. Dassonville Certification Responsible

Dass

Page 1 | 1

Teledyne Oldham Simtronics S.A.S.
Z.I. EST - C.S. 20417
62027 ARRAS Cedex - FRANCE
Tel.: +33(0)3 21 60 80 80
www.teledyneGFD.com

Design	ed for	safety	- made	for	life

Design	ed for	safety	- made	for	life

Designed	forca	foty -	mada	for	life

EUROPEAN PLANT AND OFFICES

Z.I. Est – rue Orfila CS 20417 – 62027 ARRAS Cedex FRANCE Tél.: +33 (0)3 21 60 80 80 - Fax: +33 (0)3 21 60 80 00 Web site: https://teledynegasandflamedetection.com

AMERICAS

ASIA PACIFIC

EUROPE Tel: +1-713-559-9280 Tel: +86-21-3127-6373 Tel: +33-321-608-080 Fax: +1-281-292-2860 Fax: +86-21-3127-6365 Fax: +33-321-608-000

contact info: gasandflamedetection@teledyne.com